
Lecture 8:

The Ising model

A magnet at Cern. Credit: Cern
2D Ising model. Credit:

Sascha Wald

https://sites.uci.edu/energyobserver/2012/11/26/introduction-to-the-atlas-detector-at-the-lhc/
https://www.researchgate.net/publication/321920877_Thermalisation_and_Relaxation_of_Quantum_Systems


Ising model: Introduction

I Build-on previous lectures (random walks, cluster growth,
percolation) by adding interactions between particles
i.e. between occupied sites of the regular grid discussed in Lecture 7

I In addition, add a random component to mimic the
effects of temperature on the system
not surprisingly, this results in a system with more complex behaviour

simulation mimics thermodynamic behaviour of a ‘real’ system

I We will use this Ising model as a model for
ferro-magnetism and study the phase transition associated with ferro magnetism



Ising model: Introduction

Illustrating the relation between an electron’s spin and its magnetic moment. Credit: Princeton University

The physics! Electrons have a quantum mechanical property called spin. When spin is measured along any axis, its
value is either ~/2 or −~/2, where 2π~ is Planck’s constant. An electron’s spin is closely related to its magnetic
moment - it is as if an electron is a tiny bar magnet with a North (N) and South (S) pole, with the N pole either
pointing up or down. Just as is the case for bar magnets, the magnetic moments of two electrons close together
create a force between them, such that they will preferentially line up anti-parallel. So we would expect the spins of
two electrons close together to each other to be preferentially anti-aligned. However, there is more to it than that,
because (i) electrons repel each other electro statically since they have the same charge, and (ii) the Pauli exclusion
principle, which states that no two electron can be in the same quantum mechanical state. So consider electrons
arranged on a regular grid, and focus on a nearest-neighbour pair. When anti-aligned, they can be close together
since they are in different quantum mechanical states, and hence they will repel each-other electro statically. In
contrast when aligned, they can never get close to each other because that would violate Pauli’s exclusion principle,
therefore the electrostatic repulsion between them is not very strong. The upshot of this is, that it is energetically
favourable to be in the parallel spin state. The difference in energy (between parallel and anti-parallel) is mostly
electrostatic in origin, and can be quite large (of order ∼ eV). This is much larger than the energy associated with
the magnetic interaction. As a consequence, electron spins on a regular lattice will tend to be aligned in the same
direction, with the combined magnetic moment of each electron adding to a large net magnetic moment - this is
Ising’s model for ferromagnetism, click here if you want to know more. In single atoms, the same phenomenon
gives rise to Hund’s rules for ordering orbitals in energy.

http://farside.ph.utexas.edu/teaching/329/lectures/node110.html
https://en.wikipedia.org/wiki/Hund%27s_rules


Ising model: Introduction

I Ising model a superb toy model to understand the physics
of ferro-magnetism

I Subject of E. Ising’s PhD thesis (1920’s)



Ising model: Mathematical model
we will restrict ourselves to a two dimensional (2D) Ising model

I Consider a 2D square lattice with spins at each lattice site

I Spins can have two values: si = ±1
our convention here - see below for correct units

I Take into account only nearest neighbour interactions
left-right, up-down. Nearest-neighbour interaction is good approximation because Pauli’s exclusion

principle only relevant if spins are close

I Write total energy due to electron interactions as

E =
N∑
i=1

Ei ; Ei = −J

2

∑
j=i±1

si sj ,

Sum i runs over all N lattice sites on the square lattice, sum j runs over neighbours of i ; factor 1/2 to

avoid double counting pairs. Unfortunately, the course book misses this factor of 2.

I J is the exchange constant, J > 0 for ferromagnets



Ising model: Mathematical model

I Look at units: J̃ × (s̃)2 has dimension of energy, where s̃
is physical spin with units ~, and J̃ is the exchange
constant

I In our notation, s̃ = ~
2
s, so s̃ = ±~

2
implies s = ±1

I Therefore J̃ = J̃ (~
2
)2s2 ≡ J s2 and J has the dimension of

energy

I Energy of lattice depends on whether spins are mostly
aligned, or mostly random

I If all spins are aligned, E = −2JN - lowest energy state
I If spins are random, E ≈ 0



Ising model: Mathematical model
Consider a 2D lattice of spins, at a given temperature, T . Temperature means electrons can jiggle about:

if T is sufficiently high, spins can flip randomly

I Probability of spin flip from state 1 → state 2
e.g from up to down, or vice versa

is the Boltzmann factor

P12 ∝ exp

(
− E12

kBT

)
E12 ≡ E2 − E1, the difference between the energy in the final state (i.e. state 2) and initial state (i.e.

state 1); kB is Boltzmann’s constant

I if E2 < E1 → E12 < 0, P12 > P21 more likely to flip to lower energy state

I if |E12| � kB T , P12 ≈ P21 at high T , flips in either direction equally likely



Ising model: Mathematical model
Suppose we have a spin lattice at a given value of T . Spin may or may not flip. Which macroscopic quantities can

we compute, and how are they related to the individual spin states?

I For a given spin configuration, called ‘micro states’

I Total energy: E = −J
2

∑N
i=1 si

(∑
j=i±1 sj

)
I Magnetisation: M =

∑N
i si

M is dimensionless, get physical magnetization by multiplying with electron’s magnetic moment

I A given value of T can correspond to many micro state. The macroscopic state’s
properties are

I E =
∑
α
Eα Pα

I M =
∑
α
MαPα

Weigh each micro state by its probability, Pα.

Problematic because computational expensive: there are very many possible micro states (in fact, 2N )

I Need good way of calculating these macroscopic values -
we discuss two of them



Ising model: Mean Field Approximation
MFA - for Mean Field Approximation

I Elegant method - but its predictions are not very accurate
is only an approximation

I MFA: Replace individual spins with average spin,
si = ±1→ 〈s〉

M =
∑
i

si −→ M =
∑
i

〈s〉 = N〈s〉 ≡ N〈si〉

I Works well for infinitely large system where all spins are
equivalent

I How can we compute this in practise?



Ising model: Mean Field Approximation

I Add an external magnetic field appears to be a detour, but wait & see!

E = −J
2

∑N
i=1

( ∑
j=i±1

sisj

)
− µH

∑
i

si

(External magnetic field H interacts with spins through their magnetic moment, µ.)

I Apply this to a system with just one spin:

E± = ∓µH

notice how ± → ∓: spin aligned with H has less energy than anti-aligned

I This has two micro states, with probabilities P± = C exp
[
± µH

kBT

]
I Determine normalisation C by requiring P+ + P− = 1

=⇒ C = 1

exp
(
µH
kBT

)
+exp

(
− µH

kBT

) =
1

2 cosh
(
µH
kBT

)
I Therefore thermal average of the single spin:

〈si〉 = P+ − P− = tanh µH
kBT



Ising model: Mean Field Approximation

I Having the solution for a single spin in a background field,
we replace the background field with the average spins!

E = −
∑
i

(
J
2

∑
j=i±1

sj + µH

)
si ≡ −µHeff

∑
i

si

I The effective magnetic field is therefore
Heff = J

2µ

∑
j=i±1

sj + H

I Mean field approximation: set sj → 〈s〉 and H → 0:
HMFA = nJ

2µ
〈s〉

Here, n is the number of nearest neighbours, n = 4 in our 2D case

I Combining this with 〈s〉 = tanh µHMFA

kBT
yields a non-linear equation for 〈s〉

〈s〉 = tanh

(
Tc

T
〈s〉
)

; Tc ≡
nJ

2kB
.

Tc is called the critical temperature



Ising model: Mean Field Approximation
numerical example, for T = Tc

2
(‘low’ T , left panel) and T = Tc

0.8
(‘high’ T , right panel)

I Notice the two different regimes:
3 solutions T < Tc , left or 1 solution which =0 T > Tc , right

as expected: left panel: low T , magnetization, can be up, 〈s〉 = 1, or down, 〈s〉 = −1, or no magnetization

right panel: high T , no net magnetization, 〈s〉 = 0



Ising model: Mean Field Approximation
Magnetization as a function of temperature

I Solve numerically f (〈s〉) = 〈s〉 − tanh
Tc〈s〉
T
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Magnetization from mean field approximation



Ising model: Mean Field Approximation

I When making plots: plot M in units of Mmax = N , and set J = kB
for simplicity.

I Plots illustrates a phase transition at T = Tc (Tc = 2J/kB = 2)

of second order
meaning 1st derivative of order parameter, in this case magnetisation, is discontinuous at transition

I Around Tc : dM
dT
→∞.

I Exact form of singularity from Taylor expansion of tanh:
tanh x = x − x3

3
+O(x4)

I Therefore, around T = Tc :
〈s〉 = Tc

T
〈s〉 − 1

3

(
Tc

T

)3 〈s〉3



Ising model: Mean Field Approximation

I Examine behaviour around T = Tc : define η ≡ Tc

T
− 1,

with 0 < η � 1

〈s〉 = (3η)1/2 ∝ (Tc − T )1/2 ∝ (Tc − T )β

I Critical temperature and critical exponent:

Tc =
nJ

2kB
; β =

1

2

I Exact analytical (non MFA) result is

Tc =
2.27 J

kB
; β =

1

8

for a square lattice with n = 4

I Will now turn numerical/simulation treatment



Ising model: Numerical treatment

I Strategy very similar to what’s been done before: Use a
random number generator to decide whether to flip a spin
spin flip probability is Boltzmann factor

I Algorithm: loop over spins one at a time, decide whether
it flips (compare Pflip with number from RNG), repeat
until M equilibrates

I To calculate Pflip: Use energy of the two micro-states
(before and after flip) and Boltzmann factors.

I While running, evaluate observables directly and take
thermal average (average over many steps).



Ising model: Numerical treatment
this is called the Metropolis algorithm Layout of programme:

1. Initialise the lattice, i.e. choose si for each spin
(either at random, or si = 1∀i , or similar)

2. Sweep over all spins
At each step, decide whether or not to flip spin:

I Calculate the system’s energy E = −J/2
∑

si sj
I for current spin state, energy E1

I if spin were flipped, energy E2

I Calculate ∆E = E2 − E1

I ∆E < 0 : flip spin
I ∆E ≥ 0: flip spin if

exp

(
− ∆E

kBT

)
> R

where R is a random number ∈ [0, 1]

3. Repeat step 2 until magnetization in equilibrium at Tc , never in

equilibrium



Ising model: Numerical treatment
why does Metropolis algorithm work: Detailed balance

I Consider spin flips between states 1 and 2 energy E1, and E2 > E1

I Metropolis algorithm:

I Probability spin flip 1→ 2 is P1→2 = 1

I Probability spin flip 2→ 1 is P2→1 = exp
(
−E1−E2

kBT

)
≤ 1

Does this give the right answer?

I Analysis: Let W1 be the fraction of spins in state 1 & W2 for state 2

The rate of transitions from 1→ 2 and vice versa is

R1→2 = W1 P1→2 = W1 ; R2→1 = W2P2→1 = W2 exp

(
−

E1 − E2

kBT

)

the product of the fraction of spins in a given state times the probability that a spin flips

In thermal equilibrium, R1→2 = R2→1, in which case
W1/W2 = exp(−(E1 − E2)/kBT ) that is, states are occupied according to the

Boltzmann distribution. Applying the Metropolis algorithm therefore drives systems to thermal equilibrium



Ising model: Numerical treatment

I Metropolis algorithm drives system to thermal equilibrium

W1

W2
= exp(−(E1 − E2)/kBT )

W1 and W2 fraction of spin in states 1, and 2, with energies E1 and E2

I In principle, all systems in thermal equilibrium can be
studied with Metropolis - just need to write transition
probabilities in accordance with detailed balance, as
above.

I Metropolis algorithm simulates the canonical ensemble by
summing over micro-states with a Monte Carlo method.



Ising model: Numerical treatment
Sketch of Metropolis code

Initialise an L× L lattice with spins si .
Set all i spins constant, si = 1, or at random, si = ±1

Sweep over all spins
Sweep (meaning go) systematically through the lattice, line by line, column by column, and decide

for each spin in turn whether it flips or not. Note that, to compute ∆E for a given flip, you do

not need to sum over all spins

Impose periodic boundary conditions
spin at (0, j) has neighbours at (1, j) and (L − 1, j), in addition to (0, j + 1) and (0, j − 1).

Such a treatment reduces finite-size effects, but one should keep in mind that correlations with a

length larger than
√

2L cannot be simulated

Compute M so that you can plot M versus number of sweeps



Ising model: Numerical treatment

I In workshop: red-black sweeps subtlety in sweeping over spin

I Consider a chess-board: has red and black squares
I when sweeping over spins:

I sweep over red spins first first horizontally, then vertically

I then sweep over all black spin first horizontally, then vertically

I this improves the rate at which the system thermalises



Ising model: Numerical treatment
Example of M as a function of sweep number

I At choosen T , sweeps on an 10× 10 lattice



Ising model: Numerical treatment
Analysis of result

I At low temperature (T = 1 or T = 1.5� Tc ≈ 2):
system quite stable, with small fluctuations around
M = Mmax

I At high temperature (T = 4� Tc ≈ 2): system has
M ≈ 0, with relatively large fluctuations around M = 0

I At intermediate temperatures (T = 2) we see very large
fluctuations

I Close to the critical value (T = 2.25 ≈ Tc) see even large
fluctuations, with M ≈ 1 for a large number of sweeps,
followed by a jump to M = −1 for a large number of
sweeps



Ising model: Numerical treatment
Phase transition - the MC look at things

I Analyse 10× 10 lattice as function of temperature

As expected from MFA: when T � Tc : spins are aligned, M ≈ Mmax

When T � Tc spins are not aligned, M ≈ 0. Second-order phase-transition around T = Tc ≈ 2J/kB



Ising model: Numerical treatment
Discussion

I Results above plotted when system is in equilibrium

I critical slowdown around critical point:
The system’s time to equilibrate diverges (never in
equilibrium)

I Independent of this: Monte Carlo results in agreement
with exact calculation and MFA calculation not very accurate but does describe generic

behaviour correctly



Summary

I Simulation of a system with interactions here, between spins

I Used the Ising model as laboratory: well-defined,
well-studied system, analytical results known, a favourite
of the simulators

I A (simple) analytical approximation: mean field theory
gives qualitatively correct results: existence of a phase
transition, estimate of critical temperature

I Exact calculations (and simulation) agree and are
quantitatively different from MFA. Interestingly, numerical answers gets

closer to MFA for larger l
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