
Lecture 2:

Projectile motion
Euler and higher-order methods

Why do golf balls
have dimples?
Credit: Penn State.

Ballistic motion, Credit: wikipedia

https://news.psu.edu/story/141235/2007/06/18/research/probing-question-how-do-dimples-make-golf-balls-travel-farther
https://news.psu.edu/story/141235/2007/06/18/research/probing-question-how-do-dimples-make-golf-balls-travel-farther
https://news.psu.edu/story/141235/2007/06/18/research/probing-question-how-do-dimples-make-golf-balls-travel-farther


Ballistic motion: Mathematical model & analytical solution

I Newtonian dynamics:

d2x

dt2
= 0 ;

d2y

dt2
= −g

g ≈ 9.8 m s−2 is the acceleration due to gravity, x is horizontal distance travelled, y is height

I Analytical solution:

x = x0 + ẋ0t ; y = y0 + ẏ0 t −
g

2
t2 .

(x0, y0) is initial position, (ẋ0, ẏ0) is initial velocity in x and y direction

I In terms of launch angle, θ0, and launch speed, v0,

ẋ0 = v0 cos(θ0) ; ẏ0 = v0 sin(θ0) .



Ballistic motion: Mathematical model & analytical solution

I Exercise: show that for ẏ0 > 0 assume (x0, y0) = (0, 0) and a flat terrain:
I maximum height is reached at time tmax

tmax =
ẏ0

g

I maximum distance travelled when θ0 = π
4

I Particle’s energy, E = 1
2
mv 2 + mgy , is conserved

Ė = m(vx v̇x + vy v̇y + gvy ) = mvy (v̇y + g) = 0, since v̇x = 0 and v̇y = −g

Good test for numerical solution!



Ballistic motion: Numerical solution

I Euler’s method (see lecture on radioactive decay)

I Solution for differential equations of the type

dx

dt
= f(x, t) .

I Discretise time t and coordinate x with time-step ∆t:

x(tn+1) ≡ xn+1 = xn + f(xn, tn)∆t .

I Euler method won’t work directly first order differential equations only

I We will massage the equations!



Ballistic motion: Numerical solution

I Problem: Euler’s method not directly applicable, because
equations are second order

I Solution: use velocities as well (generally applicable)

I Original second-order equation: fy = −g in previous slide

d2y

dt2
= fy

I Rewrite as two, first-order equations:

dy

dt
= vy ;

dvy
dt

= fy .

and similarly for x (and z, etc)

I Solve first-order equations using Euler’s method



Ballistic problem: Numerical solution (cont’d)l

I Mathematical model: d2x
dt2 = 0 ; d2y

dt2 = −g
I Initial conditions: Launch angle θ0, launch speed v0,

(x0, y0) = (0, 0), (vx ,0, vy ,0) = v0(cos(θ0), sin(θ0))

I Euler’s method: t = 0: (x0, y0) = (0, 0), (v0
x , v

0
y ) = v0(cos(θ0), sin(θ0))

x(tn+1) ≡ xn+1 = xn + vn
x ∆t ; vn+1

x = vn
x + 0 ∆t

y(tn+1) ≡ yn+1 = yn + vn
y ∆t ; vn+1

y = vn
y − g∆t

tn+1 = tn + ∆t

Exercise: does this conserve energy? Answer: NO!



Ballistic motion: Numerical solution (cont’d)

I As in previous lecture: need to choose ∆t carefully
I time-scale in this problem: tmax =

vy,0
g is time to reach

maximum height
therefore take ∆t � tmax

I the flight duration is tf = 2tmax → equivalently take
∆t � tf

I Analytical solution known: good test of implementation
and choice of ∆t



Air resistance: mathematical model
Projectile suffers from air resistance, which depends on speed. No known analytical solution.

I Drag force:

Fdrag = −B1,dragv
v

v
− B2,dragv

2 v

v
+ . . .

I drag force is parallel to velocity, F ‖ v
v
v

is unit vector in the direction of motion

I drag coefficients B1,drag > 0 and B2,drag > 0 since drag
slows projectile down



Air resistance: mathematical model (cont’d)

I Dimensional analysis: |Fdrag| depends on density of air
(ρ), speed (v) and size of projectile (r): Fdrag ∝ ραvβ rγ

[A] means dimension of A

[Fdrag] = kg m s−2 = [ρ]α[v ]β[r ]γ = (kg m−3)α (m s−1)β mγ

→ α = 1 ; β = 2 ; γ = 2

I Therefore take

Fdrag ≈ −B2,dragv
2 v

v
= −B2,dragv

(
vx
vy

)
,

where, of course, v2 = v2
x + v2

y , and B2,drag ∝ ρr2 depends on projectile’s size and density of air

I Homework: B2,drag = B2,drag(y) = B2,drag(y = 0) ρ(y)
ρ(y=0)



Air resistance: Numerical solution

I Mathematical model: : m is mass of projectile, B is drag coefficient

d2x
dt2 = −B(y)v vx

m
, d2y

dt2 = −g − B(y)v vy
m

I Euler’s method: t = 0: (x0, y0) = (0, 0), (v0
x , v

0
y ) = v0(cos(θ0), sin(θ0))

xn+1 = xn + vn
x ∆t ; vn+1

x = vn
x −

B(yn)vnvn
x

m
∆t

yn+1 = yn + vn
y ∆t ; vn+1

y = vn
y − g∆t −

B(yn)vnvn
y

m
∆t

tn+1 = tn + ∆t

vn =
(
(vn

x )2 + (vn
y )2

)1/2

taking ∆t << vy,0/g



Pseudo-code

Main program

I Initial conditions.

I Calculate the trajectory.

I Print/plot the result.

I Calculate range.
Initialisation

I Fix x0, y0, t0, fix/read in v0, θ0 (in degrees).
Calculation

I Iterate eqn’s above, stop when yi < 0, nend = n = i .
Calculate range

I Range from interpolation between (xn, yn) and (xn−1, yn−1):

xrange =
ynxn−1 − yn−1xn

yn − yn−1
.



Results for trajectories



Higher-order methods Improving the Euler’s method

I Euler method simple to implement, but correct only to
O(∆t). Can we improve this?

I Yes, we can!
Remember origin of Euler’s method: Taylor expansion

x(t + ∆t) = x(t) +
dx

dt
∆t + . . .

According to the mean value theorem:

∃t ′ ∈ [t, t + ∆t] : x(t + ∆t) ≡ x(t) +
dx

dt

∣∣∣∣
t=t′

∆t

I Here t ′ includes higher order effects (curvature etc.).
Drawback: Not known generally, but maybe better
choices than t ′ = t employed in Euler method



Higher-order methods: 2nd order Runge-Kutta (RK2)

I Underlying idea: Estimate t ′ = t + ∆t/2

I But: also need dx/dt at t = t ′.
Estimate x ′ using the ‘prediction’

x ′ = x + f (x , t)
∆t

2
.

I Second-order scheme (precision O[(∆t)2]):

x ′ = x + f (x , t)
∆t

2
x(t + ∆t) = x(t) + f (x ′, t ′)∆t

xn+1 = xn + f

(
xn +

∆t

2
f (xn, tn), tn +

∆t

2

)
∆t

tn+1 = tn + ∆t



Higher-order methods: 4th order Runge-Kutta (RK4)

I Further improvement: More sampling points

x(t + ∆t) =
∆t

6
[f (x ′1, t

′
1) + 2f (x ′2, t

′
2) + 2f (x ′3, t

′
3) + f (x ′4, t

′
4)] .

I Sampling points given by

x ′1 = x t ′1 = t

x ′2 = x + f (x ′1, t
′
1) ∆t

2
t ′2 = t + ∆t

2

x ′3 = x + f (x ′2, t
′
2) ∆t

2
t ′3 = t + ∆t

2

x ′4 = x + f (x ′3, t
′
3)∆t t ′4 = t + ∆t .

I Fourth-order scheme (precision O[(∆t)4])



Euler vs. Runge-Kutta(s) for Radioactive Decays



Integration of 2nd order DEs - some more considerations

I Consider what is needed Value at t = tend? Or whole path?

I What is the accuracy required?

I Choice of ∆t? Should ∆t itself vary? How?
How does that change the method/code?

I Higher-order methods 4th order RK especially popular in computational physics

I higher-order does not imply higher accuracy
I more evaluations per step

more computationally expensive unless step-size correspondingly larger

I Other methods exist e.g. predictor-corrector, see e.g. Numerical Recipes

I Method discussed here only works for smooth functions f



Summary

I Another example for numerical solutions of differential
equations: trajectory of a particle

I Euler’s method not directly applicable due to presence of 2nd order

derivatives

Solution: Use velocities:
one 2nd-order DE → two 1st-order DEs generally applicable

I This allows to use the Euler method (again).

I Improvement of the Euler method possible,
higher-order methods: e.g. Runge-Kutta methods

better accuracy for same step-size but more computations per step



Further physics extensions to projectile motion

I Value of drag coefficient depends on velocity
underlying physics changes from laminar airflow at low speed to turbulent flow at high speed

important aspect in describing the flight of a baseball!

I properties of the surafce of the projectile matter
airflow, and hence drag force, depends significantly on smoothness of projectile’s surface

I spin: making ball spin can dramatically affect flight path
e.g. golf: strong back-spin dramatically increases range

spin can make trajectory curved - e.g. football or tennis

Exercise: use dimensional analysis to guess form of force to add


	Particle Motion

