
Scientific Computing
Lecturer: Prof Tom Theuns
tom.theuns@durham.ac.uk

office: OCW 207



About your lecturer:

I work at the Institute for Computational Cosmology

Computer simulation of the formation of galaxies. Background blue-green-red image shows intergalactic gas,
coloured according to its temperature, inset zooms into a Milky Way-like galaxy. Shown volume is 3× 1024 m on a
side. Figure from Schaye et al., ’15. Want to know more, see the Eagle web site.

http://www.icc.dur.ac.uk/
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446..521S/abstract
http://icc.dur.ac.uk/Eagle/index.php


Learning outcomes ‘Scientific Computing’

I Learn how to use computer to solve complex (=realistic)
problems

I Analyse physics to choose appropriate numerical algorithm

I Basic numerical methods and their implementation
I differential equations
I root finding: solutions for f (x) = 0
I numerical integration
I Monte Carlo methods & simulation

I Assessment via Python assignments in Jupyter notebooks,
https://notebooks.dmaitre.phyip3.dur.ac.uk/miscada-sc/Teaching assistants are

Dr Christian Arnold

Dr Emma Lofthouse

https://notebooks.dmaitre.phyip3.dur.ac.uk/miscada-sc/


Material:

I Course text book: Giordano & Nakanishi, “Computational
physics” (∼ 10 copies in library)

I Additional reading: Press et al., “Numerical Recipes”

I DUO online course notes/hand-outs: Core I: Statistics,
Machine Learning, Scientific and High Performance
Computing

https://duo.dur.ac.uk/webapps/blackboard/execute/modulepage/view?course_id=_86414_1&cmp_tab_id=_3746106_1&editMode=true&mode=cpview
https://duo.dur.ac.uk/webapps/blackboard/execute/modulepage/view?course_id=_86414_1&cmp_tab_id=_3746106_1&editMode=true&mode=cpview
https://duo.dur.ac.uk/webapps/blackboard/execute/modulepage/view?course_id=_86414_1&cmp_tab_id=_3746106_1&editMode=true&mode=cpview


This course: Scientific computing

I Lecture on a given topic (e.g. radioactive decay), 2 topics
per week

I Lab session on each topic, 2 lab sessions per week

I Course duration: 4 weeks

I Course work marked when Jupyter notebook session is
submitted

I Feedback in following lecture

I Other topics in this module: statistics, machine learning,
HPC



Scientific computing:

I Formulate a mathematical model for given problem

I Usually, analytical solution only possible once simplified

I Scientific computing to go beyond simplifications

1. Analyse problem (‘mathematical modelling’)
2. Choose and implement algorithm (‘coding’)
3. Code verification (‘debugging’)
4. Model validation/refinement (‘experiment’)
5. Speed (‘profile’)
6. Code documenting / upgrading (e.g. version control)

(This course)



Example: pendulum

I Mathematical model: d2θ
dt2 = −g

l
sin θ . l : pendulum’s length, g :

gravitational acceleration, θ angle from vertical, t: time

I Analytical model (small angle approximation, sin(θ) ≈ θ)
d2θ
dt2 = −g

l
θ .

Solution: simple harmonic motion

I Numerical model: solve for θ not small, include air drag
on pendulum bob, etc. No known analytical solution

I Code verification: test small-angle case

I Model verification: compare to real pendulum



Real-world examples

Weather forecasting

Improving efficiency of
production chains

Fundamental physics

European HPC projects

Climate modelling

https://ec.europa.eu/digital-single-market/en/projects/76000/3579


Some vocabulary

I Solutions of mathematical models are functions
e.g. for pendulum, the function θ(t)

I Functions are maps:

set of input values −→ set of output values
domain −→ range.

for pendulum: t is input, θ is output

I An algorithm is a recipe for how to compute outputs
given inputs

I An implementation codes the algorithm

I Computations evaluate functions

I In the digital world (computers), the domain and range
are discrete, and the implementation terminates after a
finite number of steps



Types of errors

I Truncation error:
Many functions are computed as a series, e.g.,
sin x = x − x3

3!
+ . . . or similar. Evaluation is limited to a

finite number of terms.

I Finite precision error:
Computer uses a finite number of bits to represent
numbers. This leads to round-off errors and breaks
commutativity of mathematical operations
Example: 1030 + 1− 1030 = 0, and a + b + c 6= a + c + b

I Discretisation error:
Computer approximates a smooth function with discrete
steps. Accuracy improves with decreasing step-size.

Errors can accumulate, leading to instabilities. Poor
implementation of algorithm yields incorrect answer.



Course contents
in (): lecture/ws room, teaching assistant (TA), problem assistant

I 1-6: formatively assessed submit final notebook 6 days after lecture Sunday noon for

Monday assignment, Thursday noon for Friday assignment

I 7+8: summatively assessed: paper submission deadline November 15th

1. Radioactive decay (TLC025, TA: Lofthouse, setter: Arnold)

2. Ballistic motion (Lecture OCW017, WS: CM001-3, TA: Lofthouse, setter: Arnold)

3. Harmonic motion (TLC025, TA: Lofthouse, setter, Arnold)

4. Chaos (Lecture OCW017, WS: CM001-3, TA: Lofthouse, setter: Lofthouse)

5. Root finding and integration (TLC025, TA: Arnold, setter: Lofthouse)

6. Random walks (Lecture OCW017, WS: CM001-3, TA: Arnold, setter: Lofthouse)

7. Cluster growth and percolation (TLC025, TA: Arnold, setter: Lofthouse)

8. Ising model and phase transitions (Lecture OCW017, WS: CM001-3, TA:

Arnold, setter: Arnold)


